Extensions 1→N→G→Q→1 with N=C9 and Q=C3xC22:C4

Direct product G=NxQ with N=C9 and Q=C3xC22:C4
dρLabelID
C22:C4xC3xC9216C2^2:C4xC3xC9432,203

Semidirect products G=N:Q with N=C9 and Q=C3xC22:C4
extensionφ:Q→Aut NdρLabelID
C9:1(C3xC22:C4) = D18:C12φ: C3xC22:C4/C2xC4C6 ⊆ Aut C972C9:1(C3xC2^2:C4)432,147
C9:2(C3xC22:C4) = C62.27D6φ: C3xC22:C4/C23C6 ⊆ Aut C972C9:2(C3xC2^2:C4)432,167
C9:3(C3xC22:C4) = C22:C4x3- 1+2φ: C3xC22:C4/C22:C4C3 ⊆ Aut C972C9:3(C3xC2^2:C4)432,205
C9:4(C3xC22:C4) = C3xD18:C4φ: C3xC22:C4/C2xC12C2 ⊆ Aut C9144C9:4(C3xC2^2:C4)432,134
C9:5(C3xC22:C4) = C3xC18.D4φ: C3xC22:C4/C22xC6C2 ⊆ Aut C972C9:5(C3xC2^2:C4)432,164

Non-split extensions G=N.Q with N=C9 and Q=C3xC22:C4
extensionφ:Q→Aut NdρLabelID
C9.(C3xC22:C4) = C22:C4xC27central extension (φ=1)216C9.(C3xC2^2:C4)432,21

׿
x
:
Z
F
o
wr
Q
<